login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m such that prime(m) is of the form floor(nr+h), where r=(1+sqrt(5))/2 and h=1/2; complement of A184864.
4

%I #4 Mar 30 2012 18:57:17

%S 1,2,3,5,6,8,9,10,11,12,15,16,18,20,21,22,23,24,25,28,30,32,34,35,37,

%T 38,39,40,42,43,44,45,46,48,49,51,52,53,54,55,57,59,61,62,63,64,66,68,

%U 70,71,72,73,75,76,79,80,81,82,86,89,90,92,93,96,98,99,101,102,103,105,107,109,111,112,115,116,118,120,122,124,125,126,127,130,131,132,133,134,136,137,140,141,144,147,149,151,153,154,156,157,158,159,161,162,164

%N Numbers m such that prime(m) is of the form floor(nr+h), where r=(1+sqrt(5))/2 and h=1/2; complement of A184864.

%e See A184859.

%t r=(1+5^(1/2))/2; h=1/2; s=r/(r-1);

%t a[n_]:=Floor [n*r+h];

%t Table[a[n], {n, 1, 120}] (* A007067 *)

%t t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1

%t t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2

%t t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3

%t (* Lists t1, t2, t3 match A184859, A184860, A184861. *)

%Y Cf. A184859, A184864.

%K nonn

%O 1,2

%A _Clark Kimberling_, Jan 23 2011