login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form floor(k*sqrt(3)).
9

%I #15 Nov 02 2021 06:31:18

%S 3,5,13,17,19,29,31,41,43,53,67,71,79,83,103,107,109,131,157,173,181,

%T 193,197,199,211,223,233,239,251,263,271,277,311,313,337,349,353,367,

%U 379,389,401,419,431,433,439,443,457,467,479,491,509,521,523,547,557,569,571,587,599,601,607,613,647,659,661,673,677,691,701,727,739,743,751,769,827,829,853,857,859,881,883,907,911,919,937,947,971,983,997,1009,1013,1021,1039

%N Primes of the form floor(k*sqrt(3)).

%C See A184774.

%C Equals the prime terms of A022838. - _Bill McEachen_, Oct 28 2021

%e The sequence A022838(n)=floor(n*sqrt(3)) begins with 1,3,5,6,8,10,12,13,15,17,19,... which includes the primes A022838(2)=3, A022838(3)=5, A022838(8)=13,...

%t r=3^(1/2); s=r/(r-1);

%t a[n_]:=Floor [n*r]; (* A022838 *)

%t b[n_]:=Floor [n*s]; (* A054406 *)

%t Table[a[n],{n,1,120}]

%t t1={};Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1

%t t2={};Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2

%t t3={};Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,300}];t3

%t t4={};Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}];t4

%t t5={};Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}];t5

%t t6={};Do[If[MemberQ[t4,Prime[n]],AppendTo[t6,n]],{n,1,300}];t6

%t (* The lists t1, t2, t3, t4, t5, t6 match the sequences

%t A184796, A184797, A184798, A184799, A184800, A184801. *)

%Y Cf. A184774, A184797, A184798, A184799, A184800, A184801.

%Y Cf. A022838. - _Bill McEachen_, Oct 28 2021

%K nonn

%O 1,1

%A _Clark Kimberling_, Jan 22 2011