login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184636
a(n) = floor(1/{(n^4+2*n)^(1/4)}), where {}=fractional part.
1
3, 8, 18, 32, 50, 72, 98, 128, 162, 200, 242, 288, 338, 392, 450, 512, 578, 648, 722, 800, 882, 968, 1058, 1152, 1250, 1352, 1458, 1568, 1682, 1800, 1922, 2048, 2178, 2312, 2450, 2592, 2738, 2888, 3042, 3200, 3362, 3528, 3698, 3872, 4050, 4232, 4418, 4608, 4802, 5000, 5202, 5408, 5618, 5832, 6050, 6272, 6498, 6728, 6962, 7200, 7442, 7688, 7938, 8192, 8450, 8712, 8978, 9248, 9522, 9800
OFFSET
1,1
COMMENTS
Is a(n) = A001105(n) for n>=2 ?
FORMULA
a(n)=floor(1/{(n^4+2*n)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+a(n-3) for n>=5, and that a(n)=2*n^2 for n>=2.
MATHEMATICA
p[n_]:=FractionalPart[(n^4+2*n)^(1/4)];
q[n_]:=Floor[1/p[n]];
Table[q[n], {n, 1, 80}]
FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
Join[{3}, LinearRecurrence[{3, -3, 1}, {8, 18, 32}, 69]] (* Ray Chandler, Aug 02 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 18 2011
STATUS
approved