login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184619 a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=1/3; complement of A184618. 3

%I

%S 2,6,9,12,16,19,23,26,29,33,36,40,43,46,50,53,57,60,64,67,70,74,77,81,

%T 84,87,91,94,98,101,105,108,111,115,118,122,125,128,132,135,139,142,

%U 146,149,152,156,159,163,166,169,173,176,180,183,186,190,193,197,200,204,207,210,214,217,221,224,227

%N a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=1/3; complement of A184618.

%H G. C. Greubel, <a href="/A184619/b184619.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=1/3.

%t r=2^(1/2); h=1/3; s=r/(r-1);

%t Table[Floor[n*r+h],{n,1,120}] (* A184618 *)

%t Table[Floor[n*s+h-h*s],{n,1,120}] (* A184619 *)

%o (PARI) for(n=1, 100, print1(floor(n*sqrt(2)/(sqrt(2)-1) - sqrt(2)/(3*sqrt(2) - 3) + 1/3), ", ")) \\ _G. C. Greubel_, Apr 20 2018

%o (Magma) [Floor(n*Sqrt(2)/(Sqrt(2) - 1) - Sqrt(2)/(3*Sqrt(2) - 3) + 1/3): n in [1..100]]; // _G. C. Greubel_, Apr 20 2018

%Y Cf. A184618.

%K nonn

%O 1,1

%A _Clark Kimberling_, Jan 18 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 17:18 EDT 2022. Contains 357090 sequences. (Running on oeis4.)