login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Half the number of (n+1)X(k+1) binary arrays with no 2X2 subblock sum differing from a horizontal or vertical neighbor subblock sum by more than one
10

%I #5 Mar 31 2012 12:36:00

%S 8,28,28,98,160,98,350,918,918,350,1250,5430,8643,5430,1250,4450,

%T 32042,84828,84828,32042,4450,15842,188394,828804,1396000,828804,

%U 188394,15842,56426,1107926,8066003,22837236,22837236,8066003,1107926,56426,200978

%N T(n,k)=Half the number of (n+1)X(k+1) binary arrays with no 2X2 subblock sum differing from a horizontal or vertical neighbor subblock sum by more than one

%C Table starts

%C ......8........28..........98............350.............1250

%C .....28.......160.........918...........5430............32042

%C .....98.......918........8643..........84828...........828804

%C ....350......5430.......84828........1396000.........22837236

%C ...1250.....32042......828804.......22837236........624608260

%C ...4450....188394.....8066003......371916790......16993352260

%C ..15842...1107926....78509868.....6057271712.....462355902596

%C ..56426...6519094...764691186....98736408638...12592730376316

%C .200978..38356642..7447473213..1609249499406..342921355920877

%C .715786.225665454.72527899252.26226651558476.9337694288241678

%H R. H. Hardin, <a href="/A184614/b184614.txt">Table of n, a(n) for n = 1..144</a>

%e Some solutions for 3X3

%e ..0..1..0....0..0..0....1..0..1....1..0..1....1..0..0....1..0..1....1..1..1

%e ..1..1..0....0..1..1....1..0..1....0..0..0....1..1..1....0..0..0....0..1..1

%e ..0..1..1....0..0..0....1..1..0....0..0..1....0..0..0....0..1..1....1..1..1

%e ...

%e ...3..2.......1..2.......2..2.......1..1.......3..2.......1..1.......3..4...

%e ...3..3.......1..2.......3..2.......0..1.......2..2.......1..2.......3..4...

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Jan 18 2011