login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = 1/4 the number of (n+1) X (k+1) binary arrays with equal numbers of 2 X 2 subblocks with sums 1 and 3.
10

%I #7 Jan 14 2017 01:40:19

%S 2,5,5,16,24,16,58,156,156,58,214,1123,1986,1123,214,784,8268,28192,

%T 28192,8268,784,2880,60569,411825,782948,411825,60569,2880,10704,

%U 446426,6045460,22581061,22581061,6045460,446426,10704,40264,3333345,89538170

%N T(n,k) = 1/4 the number of (n+1) X (k+1) binary arrays with equal numbers of 2 X 2 subblocks with sums 1 and 3.

%C Table starts

%C ......2.........5...........16..............58................214

%C ......5........24..........156............1123...............8268

%C .....16.......156.........1986...........28192.............411825

%C .....58......1123........28192..........782948...........22581061

%C ....214......8268.......411825........22581061.........1291076970

%C ....784.....60569......6045460.......661355087........75369979530

%C ...2880....446426.....89538170.....19597196907......4461217004146

%C ..10704...3333345...1339793447....586441134417....266823559411796

%C ..40264..25146354..20215904926..17688240987365..16087490826015621

%C .152728.190958245.306972320468.536871796215114.976144514798586404

%H R. H. Hardin, <a href="/A184604/b184604.txt">Table of n, a(n) for n = 1..180</a>

%e Some solutions for 4 X 3:

%e ..1..0..0....0..0..1....1..1..1....1..0..1....0..0..0....1..0..0....1..0..0

%e ..1..1..0....1..1..1....0..0..1....0..1..1....1..0..1....0..0..1....0..1..0

%e ..0..0..1....0..0..0....0..0..0....0..1..1....0..1..1....1..1..1....0..1..1

%e ..1..1..0....1..1..0....1..1..1....0..0..0....0..1..0....0..1..1....0..0..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 18 2011