%I #11 Sep 08 2022 08:45:55
%S 2,5,9,12,15,19,22,26,29,33,36,39,43,46,50,53,56,60,63,67,70,73,77,80,
%T 84,87,91,94,97,101,104,108,111,114,118,121,125,128,132,135,138,142,
%U 145,149,152,155,159,162,166,169,172,176,179,183,186,190,193,196,200,203,207,210,213,217,220,224,227,231,234,237,241,244,248,251,254,258,261,265,268,271,275,278,282,285,289,292,295,299,302,306,309,312,316,319,323,326,330,333,336,340,343,347,350,353,357,360,364,367,371,374,377,381,384,388,391,394,398,401,405,408
%N a(n) = floor((n-1/3)*(2+sqrt(2))), complement of A184578.
%H G. C. Greubel, <a href="/A184579/b184579.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = floor((n-1/3)*(2+sqrt(2))).
%t r=2^(1/2); c=-1/3; s=r/(r-1);
%t Table[Floor[n*r-c*r],{n,1,120}] (* A184578 *)
%t Table[Floor[n*s+c*s],{n,1,120}] (* A184579 *)
%o (PARI) vector(120, n, floor((n-1/3)*(2+sqrt(2)))) \\ _G. C. Greubel_, Aug 19 2018
%o (Magma) [Floor((n-1/3)*(2+Sqrt(2))): n in [1..120]]; // _G. C. Greubel_, Aug 19 2018
%Y Cf. A184578.
%K nonn
%O 1,1
%A _Clark Kimberling_, Jan 17 2011