login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184574
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order
10
14178, 102445, 102445, 545662, 993538, 545662, 2430950, 6803631, 6803631, 2430950, 9496395, 37767705, 57374460, 37767705, 9496395, 33351260, 179122657, 380532059, 380532059, 179122657, 33351260, 107058241, 748499580, 2113138210
OFFSET
1,1
COMMENTS
Table starts
......14178......102445........545662........2430950.........9496395
.....102445......993538.......6803631.......37767705.......179122657
.....545662.....6803631......57374460......380532059......2113138210
....2430950....37767705.....380532059.....2943827443.....18803004899
....9496395...179122657....2113138210....18803004899....136680720320
...33351260...748499580...10202200416...103444456133....848542379467
..107058241..2816118529...43935544294...503785839330...4626643143791
..318063303..9696377100..171891306894..2213469458762..22587829272879
..883398416.30941723282..619309263773..8896632071640.100176548344077
.2312834051.92420016377.2076328840978.33064363109286.408222405584237
FORMULA
Empirical: T(n,k) is a polynomial of degree 3k+16 in n, for fixed k.
Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.
EXAMPLE
Some solutions for 5X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..1..1....0..0..0..1....0..0..1..1....0..0..0..0....0..0..0..0
..0..0..1..2....0..0..1..1....0..0..1..1....0..0..0..2....0..0..1..2
..2..3..0..0....0..0..3..3....0..3..1..3....1..2..2..2....0..2..3..2
..2..3..0..1....0..1..2..2....1..3..3..3....3..2..3..0....0..3..3..1
CROSSREFS
Sequence in context: A204282 A134610 A104825 * A184566 A184565 A251068
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, general degree formula intuited by D. S. McNeil in the Sequence Fans Mailing List, Jan 17 2011
STATUS
approved