OFFSET
1,1
COMMENTS
Table starts
......14178......102445........545662........2430950.........9496395
.....102445......993538.......6803631.......37767705.......179122657
.....545662.....6803631......57374460......380532059......2113138210
....2430950....37767705.....380532059.....2943827443.....18803004899
....9496395...179122657....2113138210....18803004899....136680720320
...33351260...748499580...10202200416...103444456133....848542379467
..107058241..2816118529...43935544294...503785839330...4626643143791
..318063303..9696377100..171891306894..2213469458762..22587829272879
..883398416.30941723282..619309263773..8896632071640.100176548344077
.2312834051.92420016377.2076328840978.33064363109286.408222405584237
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..480
R. H. Hardin, Polynomials for columns 1-8
FORMULA
Empirical: T(n,k) is a polynomial of degree 3k+16 in n, for fixed k.
Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.
EXAMPLE
Some solutions for 5X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..1..1....0..0..0..1....0..0..1..1....0..0..0..0....0..0..0..0
..0..0..1..2....0..0..1..1....0..0..1..1....0..0..0..2....0..0..1..2
..2..3..0..0....0..0..3..3....0..3..1..3....1..2..2..2....0..2..3..2
..2..3..0..1....0..1..2..2....1..3..3..3....3..2..3..0....0..3..3..1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, general degree formula intuited by D. S. McNeil in the Sequence Fans Mailing List, Jan 17 2011
STATUS
approved