login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184553
a(n) = Sum_{k=0..n} C(3n+k,n-k)*C(4n-k,k).
1
1, 6, 79, 1158, 17851, 283246, 4579306, 75013112, 1240774907, 20677408080, 346638007264, 5839169781594, 98755770443674, 1675855850883818, 28520685212980872, 486589040917153648, 8319672542504635643
OFFSET
0,2
FORMULA
Self-convolution of A184554.
From Vaclav Kotesovec, Oct 05 2020: (Start)
Recurrence: 4608*n*(2*n - 1)*(3*n - 2)*(3*n - 1)*(6*n - 5)*(6*n - 1)*(824272*n^5 - 5898332*n^4 + 16800434*n^3 - 23808019*n^2 + 16784457*n - 4709052)*a(n) = 8*(5425780331264*n^11 - 55105585740928*n^10 + 246537716167440*n^9 - 639474746248560*n^8 + 1064922708464172*n^7 - 1190925449132724*n^6 + 908552008954195*n^5 - 470324138422910*n^4 + 160844796771909*n^3 - 34319567939418*n^2 + 4065509174760*n - 199264665600)*a(n-1) + 7*(7*n - 12)*(7*n - 11)*(7*n - 10)*(7*n - 9)*(7*n - 8)*(7*n - 6)*(824272*n^5 - 1776972*n^4 + 1449826*n^3 - 553989*n^2 + 97753*n - 6240)*a(n-2).
a(n) ~ 7^(7*n + 3/2) / (sqrt(Pi*n) * 2^(6*n + 4) * 3^(6*n + 1/2)). (End)
EXAMPLE
G.f.: A(x) = 1 + 6*x + 79*x^2 + 1158*x^3 + 17851*x^4 + 283246*x^5 +...
A(x)^(1/2) = 1 + 3*x + 35*x^2 + 474*x^3 + 6891*x^4 + 104360*x^5 +...+ A184554(n)*x^n +...
Given triangle T(n,k) = C(4n-k,k), which begins:
1;
3, 1;
15, 7, 1;
84, 45, 11, 1;
495, 286, 91, 15, 1;
3003, 1820, 680, 153, 19, 1; ...
ILLUSTRATE formula a(n) = Sum_{k=0..n} T(n,k)*T(n,n-k):
a(2) = 79 = 15*1 + 7*7 + 1*15;
a(3) = 1158 = 84*1 + 45*11 + 11*45 + 1*84;
a(4) = 17851 = 495*1 + 286*15 + 91*91 + 15*286 + 1*495;
a(5) = 283246 = 3003*1 + 1820*19 + 680*153 + 153*680 + 19*1820 + 1*3003; ...
MATHEMATICA
Table[Sum[Binomial[3*n + k, n - k]*Binomial[4*n - k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 05 2020 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(3*n+k, n-k)*binomial(4*n-k, k))}
CROSSREFS
Sequence in context: A093033 A156929 A123796 * A129524 A131237 A024082
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 16 2011
STATUS
approved