%I
%S 1,3,4,5,6,7,9,10,11,12,14,15,16,17,19,20,21,22,24,25,26,27,29,30,31,
%T 32,33,35,36,37,38,40,41,42,43,45,46,47,48,50,51,52,53,54,56,57,58,59,
%U 61,62,63,64,66,67,68,69,71,72,73,74,75,77,78,79,80,82,83,84,85,87,88,89,90,92,93,94,95,96,98,99,100,101,103,104,105,106,108,109,110,111,113,114,115,116,117,119,120,121,122,124,125,126,127,129,130,131,132,134,135,136,137,139,140,141,142,143,145,146,147,148
%N Lower sWythoff sequence, where s=4n3. Complement of A184519.
%C See A184117 for the definition of lower and upper sWythoff sequences.
%t k = 4; r = 3; d = Sqrt[4 + k^2];
%t a[n_] := Floor[(1/2) (d + 2  k) (n + r/(d + 2))];
%t b[n_] := Floor[(1/2) (d + 2 + k) (n  r/(d + 2))];
%t Table[a[n], {n, 120}]
%t Table[b[n], {n, 120}]
%Y Cf. A184117, A184519.
%K nonn
%O 1,2
%A _Clark Kimberling_, Jan 16 2011
