login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

1/6 the number of (n+2)X5 0..2 arrays with each 3X3 subblock containing one of one value, four of another, and four of the last
1

%I #5 Mar 31 2012 12:36:00

%S 3705,7085,14119,30681,86575,249953,747735,2652785,9085231,30632409,

%T 117322423,424882145,1490248815,5857018745,21643873159,77054809761,

%U 305865631855,1139590008233,4082296717095,16272461979425,60842958745471

%N 1/6 the number of (n+2)X5 0..2 arrays with each 3X3 subblock containing one of one value, four of another, and four of the last

%C Column 3 of A184477

%H R. H. Hardin, <a href="/A184471/b184471.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n)=6*a(n-1)-11*a(n-2)+129*a(n-3)-738*a(n-4)+1353*a(n-5)-6290*a(n-6)+33312*a(n-7)-61072*a(n-8)+155640*a(n-9)-733968*a(n-10)+1345608*a(n-11)-2177568*a(n-12)+8661600*a(n-13)-15879600*a(n-14)+18027792*a(n-15)-56197152*a(n-16)+103028112*a(n-17)-89177760*a(n-18)+197883648*a(n-19)-362786688*a(n-20)+256296960*a(n-21)-350479872*a(n-22)+642546432*a(n-23)-390790656*a(n-24)+241864704*a(n-25)-443418624*a(n-26)+241864704*a(n-27)

%e Some solutions with a(1,1)=0 for 4X5

%e ..0..1..2..0..1....0..0..0..2..0....0..1..2..0..2....0..1..1..0..1

%e ..0..0..0..0..0....1..1..1..1..0....2..2..2..2..1....0..0..1..1..0

%e ..1..1..1..1..1....2..0..1..0..1....1..1..1..1..1....1..0..2..0..0

%e ..0..1..2..0..1....0..0..0..2..0....0..1..2..0..2....0..1..1..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Jan 15 2011