Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jan 20 2018 16:13:21
%S 4,14,64,352,2192,14624,99880,699252,4971184,35792568,260301176,
%T 1908882592,14096303344,104715443852,781874941184,5864062367252,
%U 44152937528384,333599974922264,2528336632928152,19215358428046176,146402730743992960,1117984489446008100
%N Number of distinct n X 3 toroidal binary arrays.
%H Vaclav Kotesovec, <a href="/A184265/b184265.txt">Table of n, a(n) for n = 1..1000</a>
%H S. N. Ethier, <a href="http://arxiv.org/abs/1301.2352">Counting toroidal binary arrays</a>, arXiv preprint arXiv:1301.2352, 2013 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Ethier/ethier2.html">J. Int. Seq. 16 (2013) #13.4.7</a> .
%F a(n) ~ 8^n / (3*n). - _Vaclav Kotesovec_, Sep 04 2014
%p with(numtheory):
%p a:= n-> add(add(phi(c)*phi(d) *2^(3*n/ilcm(c, d)),
%p d=divisors(n)), c=[1, 3])/(3*n):
%p seq(a(n), n=1..30); # _Alois P. Heinz_, Aug 25 2012
%Y Column 3 of A184271.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 10 2011
%E More terms from _Alois P. Heinz_, Aug 25 2012