%I #5 Mar 31 2012 12:35:57
%S 190,3050,46514,723635,11226643,174401423,2708892872,42079740149,
%T 653660484007,10153933128956,157730759876804,2450184099235300,
%U 38061075490701270,591239462480203820,9184293917133748800
%N Half the number of (n+1)X5 binary arrays with no 2X2 subblock containing exactly one 1
%C Column 4 of A184197
%H R. H. Hardin, <a href="/A184192/b184192.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n)=25*a(n-1)-152*a(n-2)-109*a(n-3)+3368*a(n-4)-6811*a(n-5)-12971*a(n-6)+49951*a(n-7)-9491*a(n-8)-92048*a(n-9)+49214*a(n-10)+74086*a(n-11)-38089*a(n-12)-32429*a(n-13)+8846*a(n-14)+6910*a(n-15)-139*a(n-16)-458*a(n-17)-58*a(n-18)-2*a(n-19)
%e Some solutions for 3X5
%e ..1..1..0..0..0....0..1..1..0..1....1..0..1..0..1....0..1..0..1..0
%e ..1..0..1..1..1....1..0..1..0..1....1..0..1..1..0....0..1..1..1..1
%e ..1..1..1..1..0....0..1..1..1..1....0..1..0..1..0....0..1..0..1..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Jan 10 2011