Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 31 2012 12:35:56
%S 10,112,1169,10020,70243,414848,2126064,9681099,39886396,150795172,
%T 528970102,1737120632,5379657012,15806662276,44290055378,118862126126,
%U 306675218582,763173754851,1837012424988,4287769072145,9726214524190
%N Number of nX3 0..2 arrays with rows and columns in nondecreasing order
%C Column 3 of A184137
%H R. H. Hardin, <a href="/A184131/b184131.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n)=27*a(n-1)-351*a(n-2)+2925*a(n-3)-17550*a(n-4)+80730*a(n-5)-296010*a(n-6)+888030*a(n-7)-2220075*a(n-8)+4686825*a(n-9)-8436285*a(n-10)+13037895*a(n-11)-17383860*a(n-12)+20058300*a(n-13)-20058300*a(n-14)+17383860*a(n-15)-13037895*a(n-16)+8436285*a(n-17)-4686825*a(n-18)+2220075*a(n-19)-888030*a(n-20)+296010*a(n-21)-80730*a(n-22)+17550*a(n-23)-2925*a(n-24)+351*a(n-25)-27*a(n-26)+a(n-27) (=polynomial of degree 26)
%e Some solutions for 5X3
%e ..0..1..2....0..0..1....0..0..1....0..0..2....0..0..2....0..1..1....0..1..1
%e ..1..0..0....0..0..2....0..2..2....0..1..2....0..1..0....0..1..2....0..1..2
%e ..1..1..2....1..2..1....1..1..0....1..1..1....1..1..0....0..2..2....2..0..0
%e ..1..1..2....1..2..1....1..2..0....1..2..1....1..1..2....0..2..2....2..0..2
%e ..1..1..2....1..2..1....2..2..0....1..2..2....2..2..2....2..0..1....2..2..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Jan 09 2011