login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X 2 0..2 arrays with rows and columns in nondecreasing order.
1

%I #10 Apr 12 2018 04:12:32

%S 6,29,112,356,972,2359,5217,10704,20647,37818,66287,111865,182651,

%T 289698,447814,676515,1001148,1454203,2076834,2920610,4049518,5542241,

%U 7494735,10023130,13266981,17392896,22598569,29117247,37222661,47234452,59524124

%N Number of n X 2 0..2 arrays with rows and columns in nondecreasing order.

%C Column 2 of A184137.

%H R. H. Hardin, <a href="/A184130/b184130.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) (=polynomial of degree 8).

%F Conjectures from _Colin Barker_, Apr 12 2018: (Start)

%F G.f.: x*(2 - x)*(3 - 11*x + 28*x^2 - 42*x^3 + 39*x^4 - 22*x^5 + 7*x^6 - x^7) / (1 - x)^9.

%F a(n) = (40320 + 79344*n + 64140*n^2 + 37884*n^3 + 16009*n^4 + 3696*n^5 + 490*n^6 + 36*n^7 + n^8) / 40320.

%F (End)

%e Some solutions for 3 X 2:

%e ..0..1....1..2....0..2....0..1....0..0....0..1....0..0....0..2....0..1....0..2

%e ..0..1....2..0....1..1....0..2....0..2....1..2....0..0....2..1....1..2....2..1

%e ..2..2....2..1....1..2....2..2....0..2....2..2....0..2....2..1....2..0....2..2

%Y Cf. A184137.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 09 2011