login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184119
Upper s(n)-Wythoff sequence, where s(n) = 2n - 1; complement of A136119.
8
2, 6, 9, 12, 16, 19, 23, 26, 30, 33, 36, 40, 43, 47, 50, 53, 57, 60, 64, 67, 70, 74, 77, 81, 84, 88, 91, 94, 98, 101, 105, 108, 111, 115, 118, 122, 125, 129, 132, 135, 139, 142, 146, 149, 152, 156, 159, 163, 166, 170, 173, 176, 180, 183, 187, 190, 193, 197, 200, 204, 207, 210, 214, 217, 221, 224, 228, 231, 234, 238, 241, 245, 248, 251, 255, 258, 262, 265, 269, 272, 275, 279, 282, 286, 289, 292, 296, 299, 303, 306, 309, 313, 316, 320, 323, 327, 330, 333, 337, 340
OFFSET
1,1
COMMENTS
See A184117 for the definition of lower and upper s(n)-Wythoff sequences.
(a(n)) is an inhomogeneous Beatty sequence, the complement of the inhomogeneous Beatty sequence (A136119(n)) = (floor(sqrt(2)*n + 1 - sqrt(2)/2)). See the paper by Fraenkel. - Michel Dekking, Jan 31 2017
LINKS
Aviezri S. Fraenkel, Iterated floor function, algebraic numbers, discrete chaos, Beatty subsequences, semigroups, Transactions of the American Mathematical Society 341.2 (1994): p. 640.
FORMULA
a(n) = floor((2+sqrt(2))*n - sqrt(2)/2). - Michel Dekking, Jan 31 2017
MATHEMATICA
k=2; r=1;
mex:=First[Complement[Range[1, Max[#1]+1], #1]]&;
s[n_]:=k*n-r; a[1]=1; b[n_]:=b[n]=s[n]+a[n];
a[n_]:=a[n]=mex[Flatten[Table[{a[i], b[i]}, {i, 1, n-1}]]];
Table[s[n], {n, 30}]
Table[a[n], {n, 100}]
Table[b[n], {n, 100}]
Table[(Floor[(2 + Sqrt[2]) n - Sqrt[2]/2]), {n, 100}] (* Vincenzo Librandi, Jan 31 2017 *)
PROG
(Magma) [Floor((2+Sqrt(2))*n-Sqrt(2)/2): n in [1..80]]; // Vincenzo Librandi, Jan 31 2017
CROSSREFS
Sequence in context: A186500 A190777 A184619 * A191873 A293789 A112870
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 09 2011
STATUS
approved