login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of order-decreasing partial isometries (of an n-chain)
1

%I #16 Apr 16 2023 12:33:18

%S 1,2,5,13,30,66,137,279,556,1104,2179,4309,8518,16886,33509,66643,

%T 132672,264492,527639,1053441,2104042,4204242,8402617,16797343,

%U 33582724,67149416,134274635,268516909,536985102,1073905134,2147712461,4295294379,8590392712,17180523876,34360655167,68720786713

%N The number of order-decreasing partial isometries (of an n-chain)

%H R. Kehinde, S. O. Makanjuola and A. Umar, <a href="http://arxiv.org/abs/1101.2558">On the semigroup of order-decreasing partial isometries of a finite chain</a>, arXiv:1101.2558

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (5,-7,-3,16,-14,4).

%F a(n) = 3*a(n-1)-2*a(n-2)-2^floor(n/2)+n+1.

%F G.f.: ( -1+3*x-2*x^2-5*x^3-4*x^5+10*x^4 ) / ( (2*x-1)*(2*x^2-1)*(x-1)^3 ). - _R. J. Mathar_, Jul 03 2011

%e a(2) = 5 because there are exactly 5 order-decreasing partial isometries (on a 2-chain) namely: empty map; 1-->1; 2-->1; 2-->2; (1,2)-->(1,2) - the mappings are coordinate-wise

%Y It is the row sum of A184051

%K nonn

%O 0,2

%A _Abdullahi Umar_, Jan 12 2011