login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

n - 1 + ceiling((4+n^2)/5); complement of A184012.
1

%I #14 Mar 17 2023 18:07:13

%S 1,3,5,7,10,13,17,21,25,30,35,41,47,53,60,67,75,83,91,100,109,119,129,

%T 139,150,161,173,185,197,210,223,237,251,265,280,295,311,327,343,360,

%U 377,395,413,431,450,469,489,509,529,550,571,593,615,637,660,683,707,731,755,780,805,831,857,883,910,937,965,993,1021,1050,1079,1109,1139,1169,1200,1231,1263,1295,1327,1360

%N n - 1 + ceiling((4+n^2)/5); complement of A184012.

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,1,-2,1).

%F a(n) = n - 1 + ceiling((4+n^2)/5).

%F a(n) = +2 a(n-1) -a(n-2) +a(n-5) -2 a(n-6) +a(n-7). - R. J. Mathar, Mar 11 2012

%t a=5; b=-4;

%t Table[n+Floor[(a*n+b)^(1/2)],{n,100}]

%t Table[n-1+Ceiling[(n*n-b)/a],{n,80}]

%t LinearRecurrence[{2,-1,0,0,1,-2,1},{1,3,5,7,10,13,17},80] (* _Harvey P. Dale_, Mar 17 2023 *)

%Y Cf. A184012.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Jan 08 2011