login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = 1/4 the number of (n+1) X (k+1) binary arrays with all 2 X 2 subblock sums the same.
12

%I #11 Mar 09 2024 16:25:50

%S 4,6,6,9,8,9,15,11,11,15,25,17,14,17,25,45,27,20,20,27,45,81,47,30,26,

%T 30,47,81,153,83,50,36,36,50,83,153,289,155,86,56,46,56,86,155,289,

%U 561,291,158,92,66,66,92,158,291,561,1089,563,294,164,102,86,102,164,294,563

%N T(n,k) = 1/4 the number of (n+1) X (k+1) binary arrays with all 2 X 2 subblock sums the same.

%C Table starts

%C ...4...6...9..15..25..45..81.153.289..561.1089.2145.4225.8385.16641.33153.66049

%C ...6...8..11..17..27..47..83.155.291..563.1091.2147.4227.8387.16643.33155.66051

%C ...9..11..14..20..30..50..86.158.294..566.1094.2150.4230.8390.16646.33158.66054

%C ..15..17..20..26..36..56..92.164.300..572.1100.2156.4236.8396.16652.33164.66060

%C ..25..27..30..36..46..66.102.174.310..582.1110.2166.4246.8406.16662.33174.66070

%C ..45..47..50..56..66..86.122.194.330..602.1130.2186.4266.8426.16682.33194.66090

%C ..81..83..86..92.102.122.158.230.366..638.1166.2222.4302.8462.16718.33230.66126

%C .153.155.158.164.174.194.230.302.438..710.1238.2294.4374.8534.16790.33302.66198

%C .289.291.294.300.310.330.366.438.574..846.1374.2430.4510.8670.16926.33438.66334

%C .561.563.566.572.582.602.638.710.846.1118.1646.2702.4782.8942.17198.33710.66606

%H R. H. Hardin, <a href="/A183986/b183986.txt">Table of n, a(n) for n = 1..683</a>

%F Empirical, for every row and column: a(n) = 3*a(n-1)-6*a(n-3)+4*a(n-4).

%F From _Andrew Howroyd_, Mar 09 2024: (Start)

%F The above empirical formula is correct.

%F T(n,k) = -2 + 2^(n-1) + 2^(k-1) + 2^(floor((n-1)/2)) + 2^(floor(n/2)) + 2^(floor((k-1)/2)) + 2^(floor(k/2)). (End)

%e Some solutions for 6 X 5

%e ..0..1..0..0..1....1..1..1..1..1....1..1..0..0..1....1..1..0..1..0

%e ..1..0..1..1..0....1..0..1..0..1....0..0..1..1..0....0..0..1..0..1

%e ..0..1..0..0..1....1..1..1..1..1....1..1..0..0..1....1..1..0..1..0

%e ..1..0..1..1..0....0..1..0..1..0....0..0..1..1..0....0..0..1..0..1

%e ..0..1..0..0..1....1..1..1..1..1....1..1..0..0..1....1..1..0..1..0

%e ..1..0..1..1..0....0..1..0..1..0....0..0..1..1..0....0..0..1..0..1

%o (PARI) T(n,k) = my(m=2, b=t->2^t-1); m^2 + (m-1)^2*(b(n-1) + b(k-1)) + (m-1)*(b((n-1)\2) + b(n\2) + b((k-1)\2) + b(k\2)) \\ _Andrew Howroyd_, Mar 09 2024

%Y Columns 1..8 are A183978, A183979, A183980, A183981, A183982, A183983, A183984, A183985.

%Y Main diagonal is A183977.

%Y Cf. A184039, A184048.

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 08 2011