|
|
A183983
|
|
1/4 the number of (n+1) X 7 binary arrays with all 2 X 2 subblock sums the same.
|
|
1
|
|
|
45, 47, 50, 56, 66, 86, 122, 194, 330, 602, 1130, 2186, 4266, 8426, 16682, 33194, 66090, 131882, 263210, 525866, 1050666, 2100266, 4198442, 8394794, 16785450, 33566762, 67125290, 134242346, 268468266, 536920106, 1073807402, 2147581994, 4295098410
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*(45 - 88*x - 91*x^2 + 176*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2-1) + 2^(n-1) + 42 for n even.
a(n) = 2^(n-1) + 2^((n+1)/2) + 42 for n odd.
a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4) for n>4.
(End)
|
|
EXAMPLE
|
Some solutions for 5 X 7.
..0..0..1..0..1..0..1....1..0..1..0..1..0..1....0..1..0..1..0..1..0
..1..1..0..1..0..1..0....0..0..0..0..0..0..0....0..1..0..1..0..1..0
..0..0..1..0..1..0..1....1..0..1..0..1..0..1....0..1..0..1..0..1..0
..1..1..0..1..0..1..0....0..0..0..0..0..0..0....0..1..0..1..0..1..0
..0..0..1..0..1..0..1....1..0..1..0..1..0..1....0..1..0..1..0..1..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|