login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nondecreasing arrangements of n numbers in -2..2 with sum zero and sum of squares less than 2n.
1

%I #36 Apr 11 2018 23:41:31

%S 1,2,2,5,8,10,15,21,26,35,44,53,67,81,94,114,134,153,179,206,232,266,

%T 300,334,377,420,462,515,568,620,683,747,810,885,960,1035,1123,1211,

%U 1298,1400,1502,1603,1719,1836,1952,2084,2216,2348,2497,2646,2794,2961,3128

%N Number of nondecreasing arrangements of n numbers in -2..2 with sum zero and sum of squares less than 2n.

%C Column 2 of A183935.

%C From _David A. Corneth_, Oct 21 2017: (Start)

%C Let x_i be the number of numbers in such an arrangement with |i| = 2. Then x_1 + 4*x_2 < 2*n and x_1 is even, x_1 + x_2 != 1.

%C A pair (x_1, x_2) has a fixed number of arrangements corresponding to it, independent of the number of zeros in the arrangement, hence independent of n. For example, for (x_1, x_2) = (2, 1), we could find the arrangements (-1, -1, 2) and (-2, 1, 1) and from there on find some solutions counted in n = 4 (see example below) by putting an extra 0 to each arrangement to find (-1, -1, 0, 2) and (-2, 0, 1, 1).

%C For some n, we might find that (x_1, x_2) is feasible by the restrictions above. If all those 1's and 2's are signed positive, their sums become S = x_1 + 2 * x_2. We then change signs of 1's and 2's such that the sum of all terms is 0. If we change the sign of 1 from + to -, the total is reduced by 2 * 1 = 2. Similarily, if we change the sign of 2 from + to -, we reduce the total by 2*2 = 4. Let s_i be the number of i's whose signs we change from + to -, x_i - s_i, s_i >= 0. So the sum S must be even. We get the new sum 0 = (x_1 - 2*s_1) + (2 * x_2 - 2*s_2) = x_1 + 2 * x_2 - 2 * (s_1 + s_2) = S - 2 * (s_1 + s_2). I.e., s_1 + s_2 = S/2, which is a Diophantine equation. Note that the solution to this equation can be used for computation of various values of a(n). See the example for an application.

%C (End)

%H David A. Corneth, <a href="/A183928/b183928.txt">Table of n, a(n) for n = 1..2000</a>

%F Empirical: a(n) = a(n-1)+2*a(n-3)-a(n-4)-a(n-5)-a(n-6)-a(n-7)+2*a(n-8)+a(n-10)-a(n-11).

%F Empirical g.f.: x*(1 + x + x^3 + x^5) / ((1 - x)^4*(1 + x)*(1 + x^2)*(1 + x + x^2)^2). - _Colin Barker_, Oct 21 2017

%e All solutions for n=4:

%e -1 0 -2 -1 -1

%e 0 0 0 -1 -1

%e 0 0 1 0 1

%e 1 0 1 2 1

%e Suppose we try to find a(6) and see that (0, 0, 1, 1, 2, 2) has sum of squares <= 2*6 = 12. This corresponds to x_1 = x_2 = 2 and gives S = x_1 + 2*x_2 = 2 + 2*2 = 6. We change signs so that s_1 + 2*s_2 = S/2 = 6/2 = 3, with s_1, s_2 in {0, 1, 2}. We see that (s_1, s_2) in {(1, 1)} so the only solution for this is (0, 0, -1, 1, -2, 2) which is (-2, -1, 0, 0, 1, 2) when sorted. - _David A. Corneth_, Oct 24 2017

%o (PARI) a(n) = {my(res = 0); for(x_2 = 0, (2*n - 1) \ 4, forstep(x_1 = 0, min(2*n - 4 * x_2 - 1, n), 2, if(x_1 + x_2 != 1 && x_1 + x_2 <= n && !(x_1 == 0 && x_2%2 == 1), res += (2 * (min((x_1 - 2*(x_2%2))\4, x_2\2) + 1) - !(x_2%2))))); res} \\ _David A. Corneth_, Oct 24 2017

%Y Cf. A183935.

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 08 2011