login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = number of nondecreasing arrangements of n numbers in -k..k with sum zero.
6

%I #16 Aug 27 2024 17:01:05

%S 1,1,2,1,3,2,1,4,5,3,1,5,8,8,3,1,6,13,18,12,4,1,7,18,33,32,18,4,1,8,

%T 25,55,73,58,24,5,1,9,32,86,141,151,94,33,5,1,10,41,126,252,338,289,

%U 151,43,6,1,11,50,177,414,676,734,526,227,55,6,1,12,61,241,649,1242,1656,1514

%N T(n,k) = number of nondecreasing arrangements of n numbers in -k..k with sum zero.

%H R. H. Hardin, <a href="/A183917/b183917.txt">Table of n, a(n) for n = 1..1350</a>

%H David J. Hemmer and Karlee J. Westrem, <a href="https://arxiv.org/abs/2402.02250">Palindrome Partitions and the Calkin-Wilf Tree</a>, arXiv:2402.02250 [math.CO], 2024. See Definition 5.1 p. 8.

%e Table starts

%e 1 1 1 1 1 1 1 1 1 1 1 1 1

%e 2 3 4 5 6 7 8 9 10 11 12 13 14

%e 2 5 8 13 18 25 32 41 50 61 72 85 98

%e 3 8 18 33 55 86 126 177 241 318 410 519 645

%e 3 12 32 73 141 252 414 649 967 1394 1944 2649 3523

%e 4 18 58 151 338 676 1242 2137 3486 5444 8196 11963 17002

%e 4 24 94 289 734 1656 3370 6375 11322 19138 30982 48417 73316

%e 5 33 151 526 1514 3788 8512 17575 33885 61731 107233 178870 288100

%e 5 43 227 910 2934 8150 20094 45207 94257 184717 343363 610358 1043534

%e 6 55 338 1514 5448 16660 44916 109583 246448 517971 1028172 1943488 3521260

%e Some solutions for n=5:

%e -2 -4 -4 -4 -4 -1 -4 -3 -4 -3 -1 -4 -3 -3 -2 -4

%e -2 0 0 -1 -2 0 -2 -2 -1 -3 -1 -4 0 -2 0 -3

%e 0 0 0 0 -1 0 1 -1 1 0 0 1 0 1 0 -1

%e 0 1 2 2 3 0 2 3 2 3 0 3 0 1 1 4

%e 4 3 2 3 4 1 3 3 2 3 2 4 3 3 1 4

%o (Python)

%o from sympy.utilities.iterables import partitions

%o def A183917_T(n,k): return sum(1 for p in partitions(k*n,m=n,k=k<<1)) # _Chai Wah Wu_, Aug 27 2024

%Y Column 2 is A001973.

%Y Column 3 is A001977.

%Y Column 4 is A001981.

%Y Diagonal is A109655.

%Y Row 3 is A000982(n+1).

%K nonn,tabl

%O 1,3

%A _R. H. Hardin_, Jan 07 2011