login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of arrangements of n+2 numbers in 0..3 with each number being the sum mod 4 of two others.
1

%I #11 Apr 05 2018 09:06:06

%S 4,35,446,2827,13686,59859,250198,1023347,4140830,16663627,66867438,

%T 267922683,1072654438,4292666147,17175010598,68709242467,274856398542,

%U 1099466524251,4397952122110,17591988892331,70368333113174

%N Number of arrangements of n+2 numbers in 0..3 with each number being the sum mod 4 of two others.

%C Column 3 of A183884.

%H R. H. Hardin, <a href="/A183878/b183878.txt">Table of n, a(n) for n = 1..199</a>

%F Empirical (for n>=3): 4^(n+2) - (2*n+7)*2^(n+2) - 2*n^3 - 9*n^2 - 10*n + 3. - _Vaclav Kotesovec_, Nov 27 2012

%F Conjectures from _Colin Barker_, Apr 05 2018: (Start)

%F G.f.: x*(4 - 13*x + 258*x^2 - 1087*x^3 + 1318*x^4 + 444*x^5 - 2040*x^6 + 1536*x^7 - 384*x^8) / ((1 - x)^4*(1 - 2*x)^2*(1 - 4*x)).

%F a(n) = 12*a(n-1) - 58*a(n-2) + 148*a(n-3) - 217*a(n-4) + 184*a(n-5) - 84*a(n-6) + 16*a(n-7) for n>9.

%F (End)

%e Some solutions for n=2:

%e ..1....2....0....0....2....2....3....1....2....2....2....0....3....0....2....2

%e ..3....0....2....2....1....3....1....3....2....1....0....2....2....0....2....2

%e ..3....0....2....2....1....1....1....1....2....3....2....0....1....2....0....0

%e ..2....2....2....0....3....3....2....2....0....1....2....2....3....2....2....0

%Y Cf. A183884.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 07 2011