login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Half the number of (n+1)X7 binary arrays with no 2X2 subblock having exactly 2 ones
1

%I #5 Mar 31 2012 12:35:54

%S 557,6887,74148,864671,9764363,112439612,1284649009,14750484447,

%T 169027656900,1939448495087,22241611726431,255158474995768,

%U 2926771174469677,33574663298792895,385137356737681316

%N Half the number of (n+1)X7 binary arrays with no 2X2 subblock having exactly 2 ones

%C Column 6 of A183782

%H R. H. Hardin, <a href="/A183779/b183779.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n)=17*a(n-1)+68*a(n-2)-2331*a(n-3)+2715*a(n-4)+127282*a(n-5)-407543*a(n-6)-3552923*a(n-7)+16967238*a(n-8)+53329851*a(n-9)-373159393*a(n-10)-374852552*a(n-11)+5020944360*a(n-12)-530953324*a(n-13)-44088857196*a(n-14)+35340877520*a(n-15)+260439199152*a(n-16)-343900816832*a(n-17)-1042238954144*a(n-18)+1873164312128*a(n-19)+2773317482368*a(n-20)-6583718366464*a(n-21)-4584267066368*a(n-22)+15516200251392*a(n-23)+3621536735232*a(n-24)-24598780526592*a(n-25)+1537459224576*a(n-26)+25766309396480*a(n-27)-6673413963776*a(n-28)-17180213116928*a(n-29)+6712291491840*a(n-30)+6848728006656*a(n-31)-3277395591168*a(n-32)-1448477720576*a(n-33)+776315338752*a(n-34)+120259084288*a(n-35)-68719476736*a(n-36)

%e Some solutions with a(1,1)=0 for 3X7

%e ..0..0..1..1..0..0..0....0..1..1..1..1..1..1....0..1..1..0..1..1..1

%e ..0..1..1..1..1..0..0....0..0..1..1..1..1..0....1..1..1..1..1..1..1

%e ..0..0..1..1..0..0..1....0..1..1..1..1..0..0....0..1..1..0..1..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Jan 07 2011