login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

1/12 the number of (n+1) X 3 0..5 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.
1

%I #7 Oct 06 2015 22:02:46

%S 1,2,29,388,4170,41423,388998,3528126,31206553,270945278,2318825000,

%T 19619049541,164448364546,1367755750914,11301610770163,92861669073522,

%U 759320826126174,6182626278886591,50153160109476104,405492870969390486

%N 1/12 the number of (n+1) X 3 0..5 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

%C Column 2 of A183729.

%H R. H. Hardin, <a href="/A183722/b183722.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n)=14*a(n-1)-36*a(n-2)-115*a(n-3)+125*a(n-4)+164*a(n-5)-155*a(n-6)-29*a(n-7)+34*a(n-8)+a(n-9)-2*a(n-10).

%e Some solutions with the first block increasing clockwise for 5 X 3:

%e ..2..4..3....4..0..3....1..4..2....1..2..1....1..2..1....1..3..2....3..5..4

%e ..1..0..1....2..1..2....0..5..0....0..5..0....0..3..0....5..4..5....2..1..2

%e ..2..5..2....3..0..3....1..4..1....1..4..1....5..4..5....0..3..0....3..0..3

%e ..3..4..3....4..5..4....2..3..2....2..3..2....0..2..0....1..2..1....4..5..4

%e ..1..5..1....1..0..2....0..4..0....5..4..1....5..3..4....4..3..5....2..1..2

%e ...

%e ...R..L.......R..L.......R..L.......R..L.......R..L.......R..L.......R..L...

%e ...L..R.......L..R.......L..R.......L..R.......R..L.......L..R.......L..R...

%e ...L..R.......L..R.......L..R.......L..R.......L..R.......L..R.......L..R...

%e ...R..L.......R..L.......R..L.......R..L.......R..L.......R..L.......R..L...

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 06 2011