login
A183719
T(n,k) = 1/20 of the number of (n+1) X (k+1) 0..4 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease.
9
2, 5, 5, 12, 17, 12, 29, 54, 54, 29, 70, 174, 224, 174, 70, 169, 559, 950, 950, 559, 169, 408, 1797, 4012, 5362, 4012, 1797, 408, 985, 5776, 16964, 30113, 30113, 16964, 5776, 985, 2378, 18566, 71712, 169560, 224640, 169560, 71712, 18566, 2378, 5741, 59677
OFFSET
1,1
COMMENTS
Table starts
....2......5......12........29.........70..........169...........408
....5.....17......54.......174........559.........1797..........5776
...12.....54.....224.......950.......4012........16964.........71712
...29....174.....950......5362......30113.......169560........954496
...70....559....4012.....30113.....224640......1683197......12606120
..169...1797...16964....169560....1683197.....16823812.....168070828
..408...5776...71712....954496...12606120....168070828....2239265280
..985..18566..303170...5374440...94463507...1680902120...29887741084
.2378..59677.1281664..30261345..707826798..16810325640..398877017736
.5741.191821.5418314.170394226.5304230928.168150768145.5325395568832
LINKS
EXAMPLE
Some solutions for 4 X 3:
..3..0..4....3..0..4....1..4..1....0..1..4....3..4..3....1..2..1....2..1..2
..2..1..2....2..1..2....2..3..2....4..2..3....2..0..1....4..3..0....3..0..4
..3..0..4....3..4..3....0..4..0....0..1..0....3..4..3....1..2..1....2..1..2
..2..1..3....2..1..2....2..3..1....3..2..3....2..1..2....0..3..4....3..0..3
...
...R..L.......R..L.......L..R.......R..L.......R..L.......R..L.......L..R...
...L..R.......L..R.......R..L.......L..R.......L..R.......L..R.......R..L...
...R..L.......R..L.......L..R.......R..L.......R..L.......R..L.......L..R...
CROSSREFS
Sequence in context: A368616 A138316 A377043 * A239340 A124201 A100953
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 06 2011
STATUS
approved