login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1) X 2 0..3 arrays with every 2 x 2 subblock summing to 6.
2

%I #8 Feb 27 2018 06:43:38

%S 44,136,452,1576,5684,21016,79172,302536,1168724,4552696,17848292,

%T 70313896,278034164,1102505176,4381191812,17438411656,69494842004,

%U 277203478456,1106487293732,4418971411816,17654956552244,70557047312536

%N Number of (n+1) X 2 0..3 arrays with every 2 x 2 subblock summing to 6.

%C Column 1 of A183642.

%H R. H. Hardin, <a href="/A183634/b183634.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4).

%F Conjectures from _Colin Barker_, Feb 27 2018: (Start)

%F G.f.: 4*x*(11 - 76*x + 158*x^2 - 96*x^3) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)).

%F a(n) = 2 + 2^(2+n) + 2*3^(1+n) + 4^(1+n).

%F (End)

%e Some solutions for 3 X 2:

%e ..0..3....2..2....0..3....1..3....0..2....1..3....2..1....3..0....1..3....3..1

%e ..3..0....0..2....0..3....0..2....1..3....1..1....2..1....0..3....2..0....1..1

%e ..1..2....3..1....3..0....2..2....2..0....2..2....3..0....2..1....1..3....1..3

%Y Cf. A183642.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 06 2011