login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

1/6 the number of (n+1) X 4 0..2 arrays with every 2 X 2 subblock containing all three values.
1

%I #9 Mar 30 2018 09:09:25

%S 120,1479,17174,201770,2366412,27768032,325834456,3823553752,

%T 44868561272,526526214848,6178727749808,72506794636336,

%U 850861000923008,9984783537547136,117170625132737568,1374987868096008576

%N 1/6 the number of (n+1) X 4 0..2 arrays with every 2 X 2 subblock containing all three values.

%C Column 3 of A183603.

%H R. H. Hardin, <a href="/A183597/b183597.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 12*a(n-1) + 20*a(n-2) - 238*a(n-3) - 420*a(n-4) + 324*a(n-5) + 400*a(n-6) - 224*a(n-7).

%F Empirical g.f.: x*(120 + 39*x - 2974*x^2 - 5338*x^3 + 4094*x^4 + 5400*x^5 - 3024*x^6) / (1 - 12*x - 20*x^2 + 238*x^3 + 420*x^4 - 324*x^5 - 400*x^6 + 224*x^7). - _Colin Barker_, Mar 30 2018

%e Some solutions with a(1,1)=0 for 3 X 4:

%e ..0..2..2..1....0..0..0..0....0..1..2..0....0..0..0..1....0..1..2..1

%e ..2..1..0..2....2..1..2..1....2..0..1..0....2..1..2..2....2..2..0..0

%e ..0..0..2..1....2..0..2..0....0..1..2..1....0..1..0..1....1..0..1..2

%Y Cf. A183603.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 05 2011