%I #5 Mar 31 2012 12:35:52
%S 1,2,2,3,4,3,4,11,11,4,6,24,37,24,6,9,56,138,138,56,9,13,121,427,736,
%T 427,121,13,19,272,1444,3504,3504,1444,272,19,28,612,4903,18288,24194,
%U 18288,4903,612,28,41,1373,16506,94376,182372,182372,94376,16506,1373,41,60
%N T(n,k)=Number of nXk binary arrays with each element equal to either the sum mod 2 of its horizontal and vertical neighbors or the sum mod 2 of its diagonal and antidiagonal neighbors
%C Table starts
%C ..1....2......3........4.........6...........9...........13...........19
%C ..2....4.....11.......24........56.........121..........272..........612
%C ..3...11.....37......138.......427........1444.........4903........16506
%C ..4...24....138......736......3504.......18288........94376.......490864
%C ..6...56....427.....3504.....24194......182372......1381491.....10466773
%C ..9..121...1444....18288....182372.....2075747.....23569130....267932379
%C .13..272...4903....94376...1381491....23569130....401449253...6843217545
%C .19..612..16506...490864..10466773...267932379...6843217545.174957270750
%C .28.1373..55852..2559872..79423818..3051705052.116932875870
%C .41.3082.187749.13257792.600709200.34604189072
%H R. H. Hardin, <a href="/A183517/b183517.txt">Table of n, a(n) for n = 1..127</a>
%e Some solutions for 4X3
%e ..1..0..0....0..1..1....1..0..0....0..1..1....0..0..0....1..1..1....0..0..0
%e ..0..1..0....0..0..0....1..1..0....1..1..0....0..0..0....1..1..1....1..0..1
%e ..0..0..0....0..1..1....1..0..0....0..0..0....0..1..0....1..0..0....1..0..1
%e ..1..1..0....1..1..0....0..0..0....0..1..1....0..0..1....0..1..0....0..0..0
%Y Column 1 is A000930(n+1)
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_ Jan 05 2011