%I
%S 1,3,3,5,15,5,7,39,39,7,13,135,117,135,13,23,495,587,587,495,23,37,
%T 1647,2925,4015,2925,1647,37,63,5751,12131,40073,40073,12131,5751,63,
%U 109,20223,58333,270549,706473,270549,58333,20223,109,183,70119,270611
%N T(n,k)=Number of nXk 0..2 arrays with every element equal to either the sum mod 3 of its vertical neighbors or the sum mod 3 of its horizontal neighbors
%C Table starts
%C ...1......3.......5.........7..........13..........23..........37..........63
%C ...3.....15......39.......135.........495........1647........5751.......20223
%C ...5.....39.....117.......587........2925.......12131.......58333......270611
%C ...7....135.....587......4015.......40073......270549.....1942323....15984991
%C ..13....495....2925.....40073......706473.....7773025...107741253..1577932971
%C ..23...1647...12131....270549.....7773025...116198719..2519745049.56697667073
%C ..37...5751...58333...1942323...107741253..2519745049.84056287173
%C ..63..20223..270611..15984991..1577932971.56697667073
%C .109..70119.1220877.119888365.20728674493
%C .183.244863.5724163.894632985
%H R. H. Hardin, <a href="/A183483/b183483.txt">Table of n, a(n) for n = 1..97</a>
%e Some solutions for 5X4
%e ..2..2..0..0....0..0..2..2....1..1..0..0....0..0..0..0....1..2..1..2
%e ..0..0..0..0....2..0..1..1....0..0..0..0....1..2..1..2....1..1..0..2
%e ..2..0..1..0....2..0..2..2....2..0..0..0....1..1..1..2....0..0..0..0
%e ..2..0..1..0....0..0..0..0....2..0..1..1....2..2..0..0....1..0..1..2
%e ..0..0..0..0....0..0..2..2....0..0..0..0....2..2..2..0....1..0..1..2
%Y Column 1 is A003229
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_ Jan 05 2011
