login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X 5 binary arrays with every 1 having exactly three king-move neighbors equal to 1.
2

%I #9 Dec 03 2022 12:09:34

%S 1,6,13,22,60,147,310,723,1723,3917,8973,20875,48427,111384,256857,

%T 599340,1384994,3187563,7469888,17334233,39905291,94076289,219435873,

%U 505824167,1202595689,2825927772,6530389759,15704159500,37297212976

%N Number of n X 5 binary arrays with every 1 having exactly three king-move neighbors equal to 1.

%C Column 5 of A183456.

%H R. H. Hardin, <a href="/A183452/b183452.txt">Table of n, a(n) for n = 1..200</a>

%F Conjecture: g.f. -x*(1 +5*x +607360*x^20 -11532*x^9 +753306*x^19 +6*x^2 -288*x^26 -57080*x^10 -612804*x^16 +7234*x^8 -600857*x^17 +181998*x^18 -57*x^3 -10592*x^25 -16800*x^24 -182104*x^23 -283*x^4 +5942*x^7 -132231*x^15 -345*x^5 +1200*x^6+ 285093*x^14 +259034*x^13 +52803*x^12 +384*x^29 +768*x^28 +2048*x^27 -67623*x^11 -344072*x^22 -99176*x^21)/(-1 +x +275562*x^20 +15867*x^9 -37876*x^19 +x^2 -8768*x^26 +384*x^30 -7896*x^10 -20075*x^16 +1261*x^8 -184239*x^17 -567185*x^18 +60*x^3 -8096*x^25 -174456*x^24 -168944*x^23 -52*x^4+980*x^7 +311194*x^15-58*x^5 -1393*x^6 +65529*x^14 +24304*x^13 -94858*x^12 +384*x^29 +1664*x^28 -1952*x^27 -12862*x^11 +73800*x^22 +537480*x^21) . - _R. J. Mathar_, Dec 03 2022

%e Some solutions for 7X5

%e ..0..0..0..1..1....0..0..0..1..1....0..0..0..0..0....0..0..0..0..0

%e ..1..1..0..1..1....0..0..0..1..1....0..1..1..0..0....0..0..0..0..0

%e ..1..1..0..0..0....0..0..0..0..0....0..1..1..0..0....1..1..0..0..0

%e ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....1..1..0..1..1

%e ..0..0..0..0..0....0..0..0..0..0....1..1..0..0..0....0..0..0..1..1

%e ..1..1..0..1..1....0..0..0..1..1....1..1..0..1..1....1..1..0..0..0

%e ..1..1..0..1..1....0..0..0..1..1....0..0..0..1..1....1..1..0..0..0

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 05 2011