login
T(n,k)=Number of nXk binary arrays with every 1 having exactly two king-move neighbors equal to 1
8

%I #5 Mar 31 2012 12:35:51

%S 1,1,1,1,5,1,1,9,9,1,1,13,18,13,1,1,33,30,30,33,1,1,69,107,72,107,69,

%T 1,1,121,265,283,283,265,121,1,1,253,553,831,2054,831,553,253,1,1,529,

%U 1505,2399,9208,9208,2399,1505,529,1,1,1013,3852,7761,34867,53608,34867,7761

%N T(n,k)=Number of nXk binary arrays with every 1 having exactly two king-move neighbors equal to 1

%C Table starts

%C .1....1....1.....1.......1........1..........1...........1............1

%C .1....5....9....13......33.......69........121.........253..........529

%C .1....9...18....30.....107......265........553........1505.........3852

%C .1...13...30....72.....283......831.......2399........7761........23840

%C .1...33..107...283....2054.....9208......34867......176949.......833001

%C .1...69..265...831....9208....53608.....257733.....1817225.....11414889

%C .1..121..553..2399...34867...257733....1744887....16192521....132651622

%C .1..253.1505..7761..176949..1817225...16192521...216103851...2491241396

%C .1..529.3852.23840..833001.11414889..132651622..2491241396..39184763856

%C .1.1013.8922.72396.3619285.65073225.1038281076.26807184942.568464533358

%H R. H. Hardin, <a href="/A183450/b183450.txt">Table of n, a(n) for n = 1..363</a>

%e Some solutions for 6X5

%e ..0..1..0..0..0....1..1..0..1..1....1..1..0..0..1....0..0..0..1..1

%e ..1..0..1..0..0....0..1..0..1..0....1..0..0..1..1....0..0..0..1..0

%e ..1..0..1..0..0....0..0..0..0..0....0..0..0..0..0....0..1..0..0..0

%e ..1..0..0..1..0....0..0..1..1..0....0..0..0..1..1....1..0..1..0..0

%e ..0..1..0..1..0....0..1..0..0..1....1..1..0..0..1....1..0..1..0..0

%e ..0..0..1..0..0....0..0..1..1..0....1..0..0..0..0....0..1..0..0..0

%Y Column 2 is A089977(n+1)

%K nonn,tabl

%O 1,5

%A _R. H. Hardin_ Jan 04 2011