|
|
A183447
|
|
Number of nX6 binary arrays with every 1 having exactly two king-move neighbors equal to 1
|
|
1
|
|
|
1, 69, 265, 831, 9208, 53608, 257733, 1817225, 11414889, 65073225, 412023374, 2584580914, 15632039022, 96988632570, 604295047829, 3722359557561, 23052411911880, 143185736751014, 886632358849607, 5495153241025073
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n)=8*a(n-1)-7*a(n-2)+68*a(n-3)-653*a(n-4)+32*a(n-5)+485*a(n-6)+14641*a(n-7)-6637*a(n-8)-8411*a(n-9)-106883*a(n-10)-56160*a(n-11)+237056*a(n-12)+223756*a(n-13)+325584*a(n-14)-437989*a(n-15)-356189*a(n-16)-703364*a(n-17)-310700*a(n-18)-8533*a(n-19)+149004*a(n-20)+97683*a(n-21)-213560*a(n-22)-308877*a(n-23)-121132*a(n-24)-130124*a(n-25)-91121*a(n-26)+125661*a(n-27)-25407*a(n-28)-35027*a(n-29)-22817*a(n-30)+17965*a(n-31)-44181*a(n-32)+3667*a(n-33)-1494*a(n-34)-2839*a(n-35)+619*a(n-36)-540*a(n-37)+209*a(n-38)-67*a(n-39)+35*a(n-40)-4*a(n-41)
|
|
EXAMPLE
|
Some solutions for 5X6
..1..0..0..1..1..0....0..0..0..0..1..0....0..1..0..1..1..0....1..1..0..1..0..0
..1..1..0..0..1..0....0..0..1..1..0..1....1..1..0..0..1..0....1..0..0..1..1..0
..0..0..0..0..0..0....0..1..0..0..0..1....0..0..0..0..0..0....0..0..0..0..0..0
..1..0..0..0..1..0....1..0..0..1..0..1....0..0..1..0..1..0....1..1..0..0..0..1
..1..1..0..0..1..1....0..1..1..0..1..0....0..1..1..0..1..1....1..0..0..0..1..1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|