%I #5 Mar 31 2012 12:35:51
%S 5,5,5,16,49,148,526,1683,5607,18936,63278,214169,722634,2443764,
%T 8285683,28091061,95346739,323830938,1100221844,3739806728,
%U 12715224800,43240998225,147078301405,500329275823,1702198109208,5791615863945
%N Half the number of nX6 binary arrays with no element unequal to a strict majority of its king-move neighbors
%C Column 6 of A183391
%H R. H. Hardin, <a href="/A183390/b183390.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n)=4*a(n-1)+10*a(n-2)-37*a(n-3)-72*a(n-4)+140*a(n-5)+330*a(n-6)-285*a(n-7)-593*a(n-8)+411*a(n-9)-637*a(n-10)-1006*a(n-11)+5550*a(n-12)+4190*a(n-13)-15280*a(n-14)-11375*a(n-15)+27958*a(n-16)+16458*a(n-17)-41630*a(n-18)-17474*a(n-19)+52572*a(n-20)+21679*a(n-21)-41801*a(n-22)-17773*a(n-23)-16922*a(n-24)-48508*a(n-25)+65684*a(n-26)+200839*a(n-27)+55288*a(n-28)-288985*a(n-29)-331326*a(n-30)+101420*a(n-31)+445669*a(n-32)+237841*a(n-33)-201182*a(n-34)-341774*a(n-35)-126768*a(n-36)+147902*a(n-37)+211127*a(n-38)+51459*a(n-39)-92595*a(n-40)-94721*a(n-41)-10980*a(n-42)+48992*a(n-43)+27397*a(n-44)-9798*a(n-45)-12388*a(n-46)-2002*a(n-47)+3015*a(n-48)+2160*a(n-49)-371*a(n-50)-554*a(n-51)-75*a(n-52)+44*a(n-53)+a(n-54)+11*a(n-55) for n>57
%e Some solutions with a(1,1)=0 for 5X6
%e ..0..0..1..1..1..1....0..0..0..0..1..1....0..0..0..0..0..0....0..0..0..1..1..1
%e ..0..0..1..1..1..1....0..0..0..0..1..1....0..0..0..0..0..0....0..0..0..1..1..1
%e ..0..0..0..1..1..1....0..0..0..1..1..1....1..1..0..0..0..0....0..0..0..1..1..1
%e ..0..0..0..0..1..1....0..0..0..1..1..1....1..1..1..1..1..1....1..1..1..0..0..0
%e ..0..0..0..0..1..1....0..0..0..1..1..1....1..1..1..1..1..1....1..1..1..0..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Jan 04 2011