Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Mar 28 2018 08:13:33
%S 2,2,2,4,8,16,36,74,156,334,706,1504,3204,6828,14576,31128,66524,
%T 142262,304360,651456,1394894,2987672,6400950,13716916,29400542,
%U 63027304,135134330,289772558,621434722,1332826866,2858815828,6132363430
%N Half the number of n X 4 binary arrays with no element unequal to a strict majority of its king-move neighbors.
%C Column 4 of A183391.
%H R. H. Hardin, <a href="/A183388/b183388.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) - 4*a(n-4) - 3*a(n-5) - a(n-6) - a(n-7) + 2*a(n-8) for n>9.
%F Empirical g.f.: 2*x*(1 - x - 3*x^2 - x^3 + 3*x^4 + 4*x^5 + 4*x^6 + 2*x^7 - 2*x^8) / (1 - 2*x - 2*x^2 + x^3 + 4*x^4 + 3*x^5 + x^6 + x^7 - 2*x^8). - _Colin Barker_, Mar 28 2018
%e Some solutions with a(1,1)=0 for 5 X 4:
%e ..0..0..1..1....0..0..1..1....0..0..0..0....0..0..1..1....0..0..0..0
%e ..0..0..1..1....0..0..1..1....0..0..0..0....0..0..1..1....0..0..0..0
%e ..1..1..0..0....0..0..1..1....1..1..1..1....0..0..1..1....0..0..1..1
%e ..1..1..0..0....0..0..1..1....1..1..1..1....1..1..0..0....1..1..1..1
%e ..1..1..0..0....0..0..1..1....1..1..1..1....1..1..0..0....1..1..1..1
%Y Cf. A183391.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 04 2011