%I #15 Apr 22 2018 04:53:10
%S 36,576,1296,3600,9216,24336,63504,166464,435600,1140624,2985984,
%T 7817616,20466576,53582400,140280336,367258896,961496064,2517229584,
%U 6590192400,17253347904,45169851024,118256205456,309598765056,810540090000
%N One quarter the number of n X 4 1..4 arrays with no two neighbors of any element equal to each other.
%C Column 4 of A183362.
%H R. H. Hardin, <a href="/A183356/b183356.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) for n>4.
%F Conjectures from _Colin Barker_, Mar 28 2018: (Start)
%F G.f.: 36*x*(1 + 14*x + 2*x^2 - 3*x^3) / ((1 + x)*(1 - 3*x + x^2)).
%F a(n) = (9/5)*2^(3-n)*((-1)^n*2^(2+n) + (3-sqrt(5))^(1+n) + (3+sqrt(5))^(1+n)) for n>1.
%F (End)
%F Assuming Colin Barker's conjectures, a(n) = (12*Fibonacci(n+1))^2, n>1. - _Ehren Metcalfe_, Apr 21 2018
%e Some solutions for 5 X 4 with a(1,1)=1:
%e 1 4 3 3 1 1 4 4 1 2 4 1 1 4 2 2 1 1 3 4
%e 2 4 1 1 4 2 3 1 3 2 4 1 1 4 3 3 2 2 3 1
%e 3 3 2 2 4 2 3 1 4 1 3 3 3 2 1 1 3 4 4 2
%e 1 1 4 4 3 1 4 4 4 1 2 2 3 2 4 4 3 1 1 3
%e 4 2 3 1 3 1 2 2 2 3 4 1 1 1 3 2 4 2 2 4
%Y Cf. A183362.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 04 2011