login
Number of nX9 binary arrays with each 1 adjacent to exactly one 0 vertically and one 0 horizontally
1

%I #5 Mar 31 2012 12:35:50

%S 1,369,1369,5561,47687,293909,1670453,10788813,67448514,412320121,

%T 2569560534,15980293011,98911784172,613936175839,3811209605687,

%U 23637546172481,146658677530777,910039996197148,5645982820431326

%N Number of nX9 binary arrays with each 1 adjacent to exactly one 0 vertically and one 0 horizontally

%C Column 9 of A183352

%H R. H. Hardin, <a href="/A183351/b183351.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n)=a(n-1)+8*a(n-2)+127*a(n-3)+267*a(n-4)+104*a(n-5)-3333*a(n-6)-12267*a(n-7)-13165*a(n-8)+54954*a(n-9)+224037*a(n-10)+269636*a(n-11)-657663*a(n-12)-2588263*a(n-13)-1624548*a(n-14)+6265119*a(n-15)+12260853*a(n-16)+2988981*a(n-17)-16718562*a(n-18)-34821804*a(n-19)-33397483*a(n-20)+23180836*a(n-21)+107317574*a(n-22)+99912474*a(n-23)+4335986*a(n-24)-151042444*a(n-25)-257787116*a(n-26)-113729701*a(n-27)+152736091*a(n-28)+276177198*a(n-29)+275843506*a(n-30)+48096203*a(n-31)-330529670*a(n-32)-42518816*a(n-33)-276611219*a(n-34)+208692183*a(n-35)+8998165*a(n-36)-90319736*a(n-37)-76958536*a(n-38)+222001674*a(n-39)+481312537*a(n-40)+816891869*a(n-41)+588358901*a(n-42)-965793769*a(n-43)-217676854*a(n-44)-2837529369*a(n-45)+130733068*a(n-46)-2290457877*a(n-47)+368905843*a(n-48)-1481083189*a(n-49)-504588614*a(n-50)-1051668404*a(n-51)-791322028*a(n-52)-447479437*a(n-53)-389404346*a(n-54)-83688170*a(n-55)-115769849*a(n-56)-18556842*a(n-57)-28865124*a(n-58)-11156774*a(n-59)-4609679*a(n-60)-6250563*a(n-61)-725797*a(n-62)-1516515*a(n-63)-10178*a(n-64)+68729*a(n-65)-79851*a(n-66)+111989*a(n-67)-11732*a(n-68)+9030*a(n-69)+6895*a(n-70)-6384*a(n-71)+1968*a(n-72)+1636*a(n-73)-232*a(n-74)-167*a(n-75)+4*a(n-76)+4*a(n-77)

%e Some solutions for 5X9

%e ..0..0..0..0..0..1..1..0..1....1..0..1..1..0..0..1..1..0

%e ..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0..1

%e ..0..0..0..0..0..0..0..0..0....0..0..1..1..0..0..0..0..1

%e ..0..0..0..0..0..0..0..0..0....0..0..1..1..0..0..0..0..0

%e ..0..1..1..0..1..1..0..0..1....0..0..0..0..0..0..0..0..0

%K nonn

%O 1,2

%A _R. H. Hardin_ Jan 04 2011