Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Sep 27 2013 08:22:46
%S 1,3,6,10,19,37,69,129,244,460,865,1629,3069,5779,10882,20494,38595,
%T 72681,136873,257761,485416,914136,1721505,3241945,6105241,11497411,
%U 21651966,40775058,76787731,144606925,272324269,512842017,965785884
%N Number of nX3 binary arrays with each 1 adjacent to exactly two other 1s
%C Column 3 of A183328
%H R. H. Hardin, <a href="/A183324/b183324.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n)=2*a(n-1)-a(n-2)+2*a(n-3)-a(n-4).
%F Empirical: G.f. -x*(-1-x+x^3-x^2) / ( 1-2*x+x^2-2*x^3+x^4 ), see A033305 - _R. J. Mathar_, Sep 27 2013
%e All solutions for 4X3
%e ..0..0..0....0..0..0....1..1..1....0..0..0....0..0..0....0..0..0....1..1..0
%e ..0..0..0....0..0..0....1..0..1....1..1..1....0..1..1....1..1..0....1..1..0
%e ..1..1..0....0..0..0....1..0..1....1..0..1....0..1..1....1..1..0....0..0..0
%e ..1..1..0....0..0..0....1..1..1....1..1..1....0..0..0....0..0..0....0..0..0
%e ...
%e ..0..0..0....0..1..1....1..1..1
%e ..0..0..0....0..1..1....1..0..1
%e ..0..1..1....0..0..0....1..1..1
%e ..0..1..1....0..0..0....0..0..0
%K nonn
%O 1,2
%A _R. H. Hardin_ Jan 03 2011