login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Half the number of n X n X n triangular binary arrays with no array-aligned 2 X 2 X 2 subtriangle being all zero or all one.
2

%I #8 Feb 26 2015 08:42:08

%S 1,3,13,80,693,8407,142362,3357612,110120153,5016480073,317135545779,

%T 27803984036400,3378700619148221,568830517952061132,

%U 132632829107728951932,42817890108690930718624

%N Half the number of n X n X n triangular binary arrays with no array-aligned 2 X 2 X 2 subtriangle being all zero or all one.

%H R. H. Hardin, <a href="/A183278/b183278.txt">Table of n, a(n) for n = 1..20</a>

%e Some solutions for 6X6X6 with a(1,1)=0

%e .......0............0............0............0............0............0

%e ......0.1..........0.1..........1.1..........1.1..........1.1..........1.0

%e .....1.1.0........1.1.0........1.0.0........0.1.0........0.0.0........0.0.1

%e ....0.0.1.0......0.1.0.1......0.1.0.1......1.0.1.1......0.1.1.0......0.1.0.0

%e ...0.1.1.0.1....1.0.0.1.0....1.0.0.1.0....0.1.0.1.0....0.1.0.1.0....1.0.0.1.1

%e ..1.0.0.1.1.0..0.0.1.0.1.0..0.0.1.0.1.0..1.0.1.0.1.1..1.1.0.1.0.1..1.0.1.0.1.0

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 03 2011