login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Half the number of n X n X n triangular binary arrays with each element having no more than two neighbors unequal to itself.
1

%I #8 Mar 27 2018 08:49:08

%S 1,4,11,26,60,132,290,620,1322,2777,5848,12169,25419,52590,109375,

%T 225532,467758,962536,1993088,4096214,8473290,17401047,35973146,

%U 73841057,152593325,313133216,646942003,1327337686,2741920392,5625006348

%N Half the number of n X n X n triangular binary arrays with each element having no more than two neighbors unequal to itself.

%H R. H. Hardin, <a href="/A183276/b183276.txt">Table of n, a(n) for n = 1..37</a>

%F Empirical: a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) + 3*a(n-4) - 6*a(n-5) - 9*a(n-6) + 3*a(n-7) + 2*a(n-8) + a(n-9) + a(n-10).

%F Empirical g.f.: x*(1 + 3*x + 3*x^2 + 2*x^3 - x^4 - 5*x^5 - 4*x^6 + 3*x^7 - x^8 + x^9) / ((1 - x - x^2)*(1 + x^2 - x^4)*(1 - 4*x^2 - x^4)). - _Colin Barker_, Mar 27 2018

%e Some solutions for 5 X 5 X 5 with a(1,1)=0:

%e ......0..........0..........0..........0..........0..........0..........0

%e .....1.1........0.0........0.1........1.1........0.0........1.1........0.0

%e ....1.1.1......0.0.0......0.1.1......1.1.1......0.0.1......1.1.1......0.0.0

%e ...0.0.0.0....1.1.1.1....0.1.1.0....0.0.0.0....0.0.1.1....1.1.1.1....1.1.1.1

%e ..0.0.0.0.0..0.1.1.1.0..0.1.1.0.0..1.0.0.0.1..0.0.1.1.1..0.0.0.0.0..1.1.1.1.0

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 03 2011