%I #5 Mar 31 2012 12:35:50
%S 2,1,1,3,5,3,3,5,5,3,7,22,39,22,7,8,59,157,157,59,8,17,220,1074,1899,
%T 1074,220,17,26,696,6851,23285,23285,6851,696,26,55,2461,44684,284314,
%U 526941,284314,44684,2461,55,89,8369,295255,3534109,12358457,12358457
%N T(n,k)=Number of nXk binary arrays with the number of 0-1 adjacencies equal to the number of 0-0 adjacencies
%C Table starts
%C ..2.....1........3..........3.............7................8
%C ..1.....5........5.........22............59..............220
%C ..3.....5.......39........157..........1074.............6851
%C ..3....22......157.......1899.........23285...........284314
%C ..7....59.....1074......23285........526941.........12358457
%C ..8...220.....6851.....284314......12358457........553836104
%C .17...696....44684....3534109.....294747516......25285926227
%C .26..2461...295255...44666147....7119707510....1169152157882
%C .55..8369..1966032..568723429..173610143327...54566287853953
%C .89.29428.13171478.7296845360.4263303128795.2565099972100788
%H R. H. Hardin, <a href="/A183262/b183262.txt">Table of n, a(n) for n = 1..220</a>
%e Some solutions for 4X6
%e ..1..1..0..0..0..1....0..1..1..0..0..0....0..1..0..0..0..1....0..0..0..0..1..0
%e ..0..0..0..0..0..1....1..1..1..0..0..1....0..0..1..0..0..0....0..0..0..0..0..0
%e ..1..0..1..0..0..0....1..0..0..0..0..1....1..0..0..0..0..0....1..0..1..1..1..0
%e ..0..0..0..1..0..1....0..0..0..1..1..1....1..0..1..1..0..1....1..0..1..0..0..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Jan 03 2011