login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: exp( Sum_{n>=1} A005651(n)*x^n/n ), where A005651 gives the sums of multinomial coefficients.
5

%I #9 Feb 19 2015 15:29:57

%S 1,1,2,5,17,69,352,2077,14505,114354,1023839,10130051,110878314,

%T 1320375213,17086334702,237832320231,3552995476517,56590659564489,

%U 958653346775294,17192978984630744,325681548343314833,6494280460641306608

%N G.f.: exp( Sum_{n>=1} A005651(n)*x^n/n ), where A005651 gives the sums of multinomial coefficients.

%H Vaclav Kotesovec, <a href="/A183239/b183239.txt">Table of n, a(n) for n = 0..420</a>

%F a(n) ~ c * (n-1)!, where c = Product_{k>=2} 1/(1-1/k!) = A247551 = 2.52947747207915264... . - _Vaclav Kotesovec_, Feb 19 2015

%e G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 17*x^4 + 69*x^5 + 352*x^6 +...

%e log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 47*x^4/4 + 246*x^5/5 + 1602*x^6/6 + 11481*x^7/7 + 95503*x^8/8 +...+ A005651(n)*x^n/n +...

%o (PARI) {a(n)=polcoeff(exp(intformal(1/x*(-1+serlaplace(1/prod(k=1,n+1,1-x^k/k!+O(x^(n+2))))))),n)}

%Y Cf. A005651, A183238, A183241.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 03 2011