Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Mar 30 2012 18:37:23
%S 1,1,1,2,1,2,3,3,3,5,4,6,10,9,14,5,10,22,34,29,43,6,15,40,84,122,100,
%T 143,7,21,65,169,334,463,367,510,8,28,98,300,738,1390,1851,1426,1936,
%U 9,36,140,489,1426,3345,6043,7767,5839,7775,10,45,192,749,2510,6990,15735
%N Triangle, read by rows, where T(n,k) equals the sum of (n-k) terms in row n of triangle A131338 starting at position nk - k(k-1)/2, with the main diagonal formed from the row sums.
%e Triangle begins:
%e 1;
%e 1,1;
%e 2,1,2;
%e 3,3,3,5;
%e 4,6,10,9,14;
%e 5,10,22,34,29,43;
%e 6,15,40,84,122,100,143;
%e 7,21,65,169,334,463,367,510;
%e 8,28,98,300,738,1390,1851,1426,1936;
%e 9,36,140,489,1426,3345,6043,7767,5839,7775;
%e 10,45,192,749,2510,6990,15735,27374,34097,25094,32869; ...
%e The rows are derived from triangle A131338 by summing terms in the following manner:
%e (1);
%e (1),(1);
%e (1+1),(1),(2);
%e (1+1+1),(1+2),(3),(5);
%e (1+1+1+1),(1+2+3),(4+6),(9),(14);
%e (1+1+1+1+1),(1+2+3+4),(5+7+10),(14+20),(29),(43);
%e (1+1+1+1+1+1),(1+2+3+4+5),(6+8+11+15),(20+27+37),(51+71),(100),(143); ...
%e where row n of triangle A131338 consists of n '1's followed by the partial sums of the prior row.
%o (PARI) {A131338(n, k)=if(k>n*(n+1)/2|k<0,0,if(k<=n,1,sum(i=0, k-n,A131338(n-1,i))))}
%o {T(n,k)=if(n==k,A131338(n,n*(n+1)/2),sum(j=n*k-k*(k-1)/2,n*k-k*(k-1)/2+n-k-1,A131338(n,j)))}
%Y Cf. A131338, A098568, A098569 (row sums), A183203 (antidiagonal sums).
%K tabl,nonn
%O 0,4
%A _Paul D. Hanna_, Dec 30 2010