The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A183191 Triangle T(n,m) = coefficient of x^n in expansion of [x/(1-x-x^2-x^3-x^4-2*x^5)]^m = sum(n>=m, T(n,m) x^n). 0
 1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 8, 12, 9, 4, 1, 17, 28, 25, 14, 5, 1, 33, 66, 66, 44, 20, 6, 1, 66, 148, 171, 129, 70, 27, 7, 1, 132, 330, 425, 364, 225, 104, 35, 8, 1, 264, 728, 1035, 984, 686, 363, 147, 44, 9, 1, 529, 1592, 2475, 2584, 1995, 1188, 553, 200, 54, 10, 1, 1057, 3459, 5830, 6624, 5600, 3689, 1932, 806, 264, 65, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Table of n, a(n) for n=1..78. FORMULA T(n,i):=sum(k=0..n-i, binomial(k+i-1,i-1)*sum(r=0..k, binomial(k,r)*sum(m=0..r, binomial(r,m)*sum(j=0..m, binomial(j,-r+n-m-k-j-i)*binomial(m,j)*2^(-r+n-m-k-j-i))))). EXAMPLE 1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 8, 12, 9, 4, 1, 17, 28, 25, 14, 5, 1, 33, 66, 66, 44, 20, 6, 1, PROG (Maxima) T(n, i):=sum(binomial(k+i-1, i-1)*sum(binomial(k, r)*sum(binomial(r, m)*sum(binomial(j, -r+n-m-k-j-i)*binomial(m, j)*2^(-r+n-m-k-j-i), j, 0, m), m, 0, r), r, 0, k), k, 0, n-i); CROSSREFS Sequence in context: A104580 A202193 A105306 * A273713 A339067 A322329 Adjacent sequences: A183188 A183189 A183190 * A183192 A183193 A183194 KEYWORD nonn,tabl AUTHOR Vladimir Kruchinin, Dec 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 05:06 EDT 2023. Contains 363139 sequences. (Running on oeis4.)