Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Dec 06 2023 18:25:34
%S 4,5,8,11,1244,1685,2009,14657,15118,20332,50830,75062
%N Numbers k such that (7*10^(2*k+1) - 9*10^k - 7)/9 is prime.
%D C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
%H Patrick De Geest, World!Of Numbers, <a href="http://www.worldofnumbers.com/wing.htm#pwp767">Palindromic Wing Primes (PWP's)</a>
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/7/77677.htm#prime">Prime numbers of the form 77...77677...77</a>
%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.
%F a(n) = (A077788(n) - 1)/2.
%t Do[If[PrimeQ[(7*10^(2n + 1) - 9*10^n - 7)/9], Print[n]], {n, 3000}]
%o (PARI) is(n)=ispseudoprime((7*10^(2*n+1)-9*10^n-7)/9) \\ _Charles R Greathouse IV_, Jun 13 2017
%Y Cf. A004023, A077775-A077798, A107123-A107127, A107648, A107649, A115073, A183174-A183187.
%K nonn,base
%O 1,1
%A _Ray Chandler_, Dec 28 2010
%E a(10) from _Robert Price_, Oct 07 2023
%E a(11) from _Robert Price_, Oct 17 2023
%E a(12) from _Robert Price_, Dec 06 2023