login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number T(n) of isometries of all subspaces of the finite metric space {1,2,...,n} (as a subspace of the reals with the Euclidean metric).
3

%I #45 Dec 31 2022 05:39:24

%S 1,2,7,22,59,142,319,686,1435,2950,5999,12118,24379,48926,98047,

%T 196318,392891,786070,1572463,3145286,6290971,12582382,25165247,

%U 50331022,100662619,201325862,402652399,805305526,1610611835,3221224510,6442449919,12884900798

%N The number T(n) of isometries of all subspaces of the finite metric space {1,2,...,n} (as a subspace of the reals with the Euclidean metric).

%C Also the number of (not necessarily maximal) cliques in the n X n bishop graph. - _Eric W. Weisstein_, Jun 04 2017

%H Vincenzo Librandi, <a href="/A183156/b183156.txt">Table of n, a(n) for n = 0..1000</a>

%H R. Kehinde and A. Umar, <a href="http://arxiv.org/abs/1101.2558">On the semigroup of partial isometries of a finite chain</a>, arXiv:1101.2558 [math.GR], 2011.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BishopGraph.html">Bishop Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Clique.html">Clique</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-9,7,-2).

%F T(n) = 3*2^(n+1) - (n+2)^2 - 1, (n >= 0).

%F G.f.: (1 - 3*x + 6*x^2 - 2*x^3) / ( (2*x - 1)*(x - 1)^3 ). - _R. J. Mathar_, Jul 03 2011

%F a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4). - _Eric W. Weisstein_, Nov 29 2017

%F a(n) = A295909(n) + A295910(n) for n > 1. - _Eric W. Weisstein_, Nov 29 2017

%F a(n) = 2*a(n-1) + n^2 - 1. - _Kritsada Moomuang_, Oct 25 2019

%e T(2) = 7 because there are exactly 7 partial isometries (on a 2-chain), namely: empty map; 1-->1; 1-->2; 2-->1; 2-->2; (1,2)-->(1,2); (1,2)-->(2,1) - the mappings are coordinate-wise.

%t LinearRecurrence[{5, -9, 7, -2}, {1, 2, 7, 22}, 40] (* _Vincenzo Librandi_, Oct 11 2017 *)

%t Table[3 2^(n + 1) - (n + 2)^2 - 1, {n, 0, 30}] (* _Vincenzo Librandi_, Oct 11 2017 *)

%t LinearRecurrence[{5, -9, 7, -2}, {2, 7, 22, 59}, {0, 20}] (* _Eric W. Weisstein_, Nov 29 2017 *)

%t CoefficientList[Series[(1 - 3 x + 6 x^2 - 2 x^3)/((-1 + x)^3 (-1 + 2 x)), {x, 0, 20}], x] (* _Eric W. Weisstein_, Nov 29 2017 *)

%o (PARI) for(n=0,33,print1(3*(2^(n+1))-(n+2)^2-1,", "))

%o (Magma) [3*2^(n+1)-(n+2)^2-1: n in [0..33]]; // _Vincenzo Librandi_, Oct 11 2017

%Y Row sums of triangles A183157, A183158.

%Y Cf. A295909 (cliques in the n X n black bishop graph).

%Y Cf. A295910 (cliques in the n X n white bishop graph).

%K nonn

%O 0,2

%A _Abdullahi Umar_, Dec 28 2010

%E Renamed the sequence using more standard and widely-used terminology, _James Mitchell_, May 19 2012