Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jun 01 2024 03:08:13
%S 1,2,3,2,5,36,7,2,3,100,11,432,13,196,225,2,17,648,19,2000,441,484,23,
%T 10368,5,676,3,5488,29,810000,31,2,1089,1156,1225,7776,37,1444,1521,
%U 80000,41,3111696,43,21296,10125,2116,47,497664,7,5000,2601,35152,53,34992,3025,307328,3249,3364,59,11664000000,61,3844,27783,2,4225,18974736,67,78608,4761,24010000,71,186624,73
%N a(n) = product of non-powerful divisors d of n.
%C Sequence is not the same as A183105: a(72) = 186624, A183105(72) = 13436928.
%C Not multiplicative, for example a(2)*a(3) <> a(6). - _R. J. Mathar_, Jun 07 2011
%H Antti Karttunen, <a href="/A183103/b183103.txt">Table of n, a(n) for n = 1..16385</a>
%F a(n) = A007955(n) / A183102(n).
%F a(1) = 1, a(p) = p, a(pq) = (pq)^2, a(pq...z) = (pq...z)^(2^(k-1)), a(p^k) = p, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
%e For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 1*2*3*6*12 = 432.
%p isA001694 := proc(n) for p in ifactors(n)[2] do if op(2,p) = 1 then return false; end if; end do; return true; end proc:
%p A183103 := proc(n) local a,d; a := 1 ; for d in numtheory[divisors](n) do if not isA001694(d) then a := a*d; end if; end do; a ; end proc:
%p seq(A183103(n),n=1..73) ; # _R. J. Mathar_, Jun 07 2011
%t powerfulQ[n_] := Min[FactorInteger[n][[All, 2]]] > 1;
%t a[n_] := Times @@ Select[Divisors[n], !powerfulQ[#]&];
%t Table[a[n], {n, 1, 73}] (* _Jean-François Alcover_, Jun 01 2024 *)
%o (PARI) A183103(n) = { my(m=1); fordiv(n, d, if(!ispowerful(d), m *= d)); m; }; \\ _Antti Karttunen_, Oct 07 2017
%Y Cf. A001694, A007955, A183098, A183102, A183105.
%K nonn
%O 1,2
%A _Jaroslav Krizek_, Dec 25 2010