login
Palindromic partition numbers.
0

%I #17 Aug 21 2017 09:52:07

%S 1,1,2,3,5,7,11,22,77,101

%N Palindromic partition numbers.

%C Partition numbers whose decimal expansion is a palindrome.

%C The next term (if one exists) has at least 400 decimal digits.

%C Next term, if it exists, is greater than A000041(2000000). - _Vaclav Kotesovec_, Apr 23 2017

%e 101 is in the sequence because 101 is the number of partitions of 13 and 101 is also a palindrome.

%t palQ[n_Integer, base_Integer:10] := Module[{idn = IntegerDigits[n, base]}, idn == Reverse@idn]; Select[Array[PartitionsP, 1000], palQ[#] &]

%t Select[PartitionsP[Range[0,1000]],PalindromeQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Aug 21 2017 *)

%Y Intersection of A000041 and A002113.

%K nonn,base,hard,more

%O 1,3

%A _Omar E. Pol_, Dec 30 2010