Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Aug 26 2024 11:42:13
%S 1,1,1,2,1,1,2,3,1,3,1,2,4,1,3,1,2,3,4,5,1,5,1,2,3,4,5,6,1,3,5,1,2,4,
%T 7,1,3,5,7,1,2,3,4,5,6,7,8,1,5,7,1,2,3,4,5,6,7,8,9,1,3,7,9,1,2,4,5,8,
%U 10,1,3,5,7,9,1,2,3,4,5,6,7,8,9,10,11,1,5,7,11,1,2,3,4,6,7,8,9,11,12,1,3,5,7,9,11
%N Numerators of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator.
%C A023022(n) and A245677(n) give number and numerator of sum of fractions a(k)/A182973(k) such that a(k) + A182973(k) = n. - _Reinhard Zumkeller_, Jul 30 2014
%D S. Cook, Problem 511: An Enumeration Problem, Journal of Recreational Mathematics, Vol. 9:2 (1976-77), 137. Solution by the Problem Editor, JRM, Vol. 10:2 (1977-78), 122-123.
%D R. K. Guy, Unsolved Problems in Number Theory (UPINT), Section D11.
%H Reinhard Zumkeller, <a href="/A182972/b182972.txt">Table of n, a(n) for n = 1..10000</a>
%H Paul Yiu, <a href="https://web.archive.org/web/20220720212753/http://math.fau.edu/Yiu/RecreationalMathematics2003.pdf">Recreational Mathematics</a>, 24.3.1 Appendix: Two enumerations of the rational numbers in (0,1), page 633.
%H <a href="/index/Ra#rational">Index entries for sequences related to enumerating the rationals</a>
%e Positive fractions < 1 listed by increasing sum of numerator and denominator, and by increasing numerator for equal sums:
%e 1/2
%e 1/3
%e 1/4 2/3
%e 1/5
%e 1/6 2/5 3/4
%e 1/7 3/5
%e 1/8 2/7 4/5
%e 1/9 3/7
%e 1/10 2/9 3/8 4/7 5/6
%e 1/11 5/7
%e 1/12 2/11 3/10 4/9 5/8 6/7
%e 1/13 3/11 5/9
%e 1/14 2/13 4/11 7/8
%e 1/15 3/13 5/11 7/9
%e 1/16 2/15 3/14 4/13 5/12 6/11 7/10 8/9
%e 1/17 5/13 7/11
%e 1/18 2/17 3/16 4/15 5/14 6/13 7/12 8/11 9/10
%e 1/19 3/17 7/13 9/11
%e (this is A182972/A182973).
%p t1:=[];
%p for n from 2 to 40 do
%p t1:=[op(t1),1/(n-1)];
%p for i from 2 to floor((n-1)/2) do
%p if gcd(i,n-i)=1 then t1:=[op(t1),i/(n-i)]; fi; od:
%p od:
%p t1;
%t t1={}; For[n=2, n <= 40, n++, AppendTo[t1, 1/(n-1)]; For[i=2, i <= Floor[(n-1)/2], i++, If[GCD[i, n-i] == 1, AppendTo[t1, i/(n-i)]]]]; t1 // Numerator // Rest (* _Jean-François Alcover_, Jan 20 2015, translated from Maple *)
%o (Pascal) program a182972;
%o var
%o num,den,n: longint;
%o function gcd(i,j: longint):longint;
%o begin
%o repeat
%o if i>j then i:=i mod j else j:=j mod i;
%o until (i=0) or (j=0);
%o if i=0 then gcd:=j else gcd:=i;
%o end;
%o begin
%o num:=1; den:=1; n:=0;
%o repeat
%o repeat
%o inc(num); dec(den);
%o if num>=den then
%o begin
%o inc(den,num); num:=1;
%o end;
%o until gcd(num,den)=1;
%o inc(n); writeln(n,' ',num);
%o until n=100000;
%o end.
%o (Haskell)
%o a182972 n = a182972_list !! (n-1)
%o a182972_list = map fst $ concatMap q [3..] where
%o q x = [(num, den) | num <- [1 .. div x 2],
%o let den = x - num, gcd num den == 1]
%o -- _Reinhard Zumkeller_, Jul 29 2014
%o (Python)
%o from itertools import count, islice
%o from math import gcd
%o def A182972_gen(): # generator of terms
%o return (i for n in count(2) for i in range(1,1+(n-1>>1)) if gcd(i,n-i)==1)
%o A182972_list = list(islice(A182972_gen(),10)) # _Chai Wah Wu_, Aug 28 2023
%Y Cf. A182973 (denominators), A366191 (interleaved).
%Y Cf. A020652, A038567, A182974, A182975, A182976.
%Y Cf. A023022, A245677, A245678, A245718.
%Y Essentially the same as A333856.
%K nonn,easy,frac,nice
%O 1,4
%A _William Rex Marshall_, Dec 16 2010
%E Corrected by _William Rex Marshall_, Aug 12 2013