Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jul 24 2022 13:53:29
%S 0,0,0,1,3,9,27,76,211,580,1578,4267,11484,30789,82301,219465,584060,
%T 1551770,4117061,10910049,28881387,76387179,201875129,533145603,
%U 1407161007,3711981168,9787157469,25793933410,67952779665,178954077522
%N Number of (1,-1)-returns to the horizontal axis in all weighted lattice paths in L_n. The members of L_n are paths of weight n that start at (0,0) , end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.
%C a(n)=Sum(k*A182896(n,k), k>=0).
%D M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
%D E. Munarini, N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns, Discrete Mathematics 259 (2002), 163-177.
%F G.f.: G(z)=z^3*c/[(1+z+z^2)(1-3z+z^2)], where c satisfies c = 1+zc+z^2*c+z^3*c^2.
%F a(n) ~ ((1 + sqrt(5))/2)^(2*n+1) / (4*sqrt(5)). - _Vaclav Kotesovec_, Mar 06 2016
%F D-finite with recurrence n*a(n) +(-4*n+3)*a(n-1) +(2*n-3)*a(n-2) +11*(n-3)*a(n-4) +(2*n-9)*a(n-6) +(-4*n+21)*a(n-7) +(n-6)*a(n-8)=0. - _R. J. Mathar_, Jul 24 2022
%e a(3)=1 because, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; they contain 1+0+0+0+0=1 (1,-1)-return to the horizontal axis.
%p eq := c = 1+z*c+z^2*c+z^3*c^2: c := RootOf(eq, c): G := z^3*c/((1+z+z^2)*(1-3*z+z^2)): Gser := series(G, z = 0, 32): seq(coeff(Gser, z, n), n = 0 .. 29);
%t CoefficientList[Series[x^3*(1 - x - x^2 - Sqrt[1+x^4-2*x^3-x^2-2*x]) / (2*x^3*(1+x+x^2)*(1-3*x+x^2)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 06 2016 *)
%Y A182896
%K nonn
%O 0,5
%A _Emeric Deutsch_, Dec 13 2010